Konformations-Enantiomerie, 3. Mitt.¹:

Kinetik und thermodynamische Daten der Racemisierung von optisch aktivem 4,5-6,7-Dibenzo-1,2-dithia-cyclooctadien*

Von

Arthur Lüttringhaus und Heinz-Jörg Rosenbaum

Aus dem Chemischen Laboratorium der Universität Freiburg/Brsg.

Mit 5 Abbildungen

(Eingegangen am 13. April 1967)

Die Racemisierung der im Titel genannten, in Konformations-Enantiomere gespaltenen Verbindung (I) wird kinetisch untersucht. Aus der Temperaturabhängigkeit der Geschwindigkeitskonstanten werden die Aktivierungsparameter: $E_a = 27,3 \pm \pm 0,6$, $\Delta H^{\pm} = 26,6 \pm 0,6$, $\Delta G^{\pm} = 28,8 \pm 0,2$ kcal/Mol und $\Delta S^{\pm} = -6,0 \pm 2,2$ kcal/Mol · Grad bestimmt. Die Konformationen und die Ursachen für ihre hohe Stabilität werden diskutiert.

Kürzlich berichteten wir über die Darstellung² der im Titel genannten Verbindung I in racemischer Form und deren Aufspaltung in Konformations-Enantiomere auf chromatographischem Wege^{2, 3}. Die aktiven Formen von I zeigten eine auffallend hohe optische Stabilität. Da I sowohl das erste optisch aktive, einfache cyclische Disulfid wie das erste optisch stabile, substituentenfreie Biphenylderivat mit viergliedriger, nichtolefinischer 2-2'-Brücke ist, war es von besonderem Interesse, die Kinetik der Racemisierung zu untersuchen und aus der Temperaturabhängigkeit dieser Reaktion erster Ordnung die thermodynamischen Daten für die Konformations-Inversion zu berechnen⁴.

* Herrn Prof. Dr. F. Wessely zum 70. Geburtstag gewidmet.

¹ 2. Mitt.: A. Lüttringhaus und K. C. Peters, Angew. Chem. 78, 603 (1966).

² U. Hess, Dissertation Univers. Freiburg/Brsg. 1965.

³ A. Lüttringhaus, U. Hess und H.-J. Rosenbaum, Z. Naturforsch. 22b (1967), im Druck; H.-J. Rosenbaum, Diplomarbeit Freiburg/Brsg. 1965.

⁴ H.-J. Rosenbaum, Dissertation Univers. Freiburg/Brsg. 1967.

In zahlreichen Beispielen von cyclischen Disulfiden und Trisulfiden konnten wir in Zusammenarbeit mit dem Institut für Elektrowerkstoffe (Freiburg/Brsg.) an Hand der Temperaturabhängigkeit der PMR-Spektren (näheres vgl. ^{5, 6}) die freie Aktivierungsenergie ΔG^+ der Ringinversion befriedigend genau abschätzen. Während in den allermeisten Fällen die cyclischen 1,2-Disulfide der Ringgrößen 6 bis 9 erst bei tiefen, fast stets weit unter 0° C liegenden Temperaturen eine Aufspaltung charakteristischer CH₂-Protonenresonanzen und damit ein Erstarren der Kon-

Abb. 1. Ausschnitt aus dem PMR-Spektrum mit den Resonanz-Signalen der Methylen-Protonen H_a , H_b von I in CS_2 bei $+24^\circ$ C, $v_0 = 60$ MHz

formation aufweisen, zeigt das PMR-Spektrum von I in CS₂ (Abb. 1) bei Zimmertemperatur eine scharf ausgeprägte Aufspaltung für die Methylen-Protonen, die geradezu als Schulbeispiel für ein AB-Spektrum dienen kann⁷. Die bei kleinerem Feld liegende Resonanz der Phenylprotonen ist in Abb. 1, die nur einen Ausschnitt wiedergibt, nicht verzeichnet. Man ersieht, daß die Protonen (H_a und H_b von I) in sterisch verschiedenen Positionen fixiert sind, das Achtringsystem also starr sein muß. Die Larmorfrequenzen sind im Spektrum relativ zum Signal des Tetramethylsilans in der dimensionslosen τ -Skala angegeben; aus der unten angegebenen Hz-Skala ist zu entnehmen, daß zwischen den Protonen eine Larmordifferenz von 40,1 und eine Spinkoppelung von 13,7 Hz auftritt⁷. Erstaunlicherweise verwischt sich diese Aufspaltung selbst bei + 130° C nicht und bleibt noch bei + 140° C (in Hexachlorbutadien) nahezu unverändert.

⁵ 1. Mitt.: A. Lüttringhaus, S. Kabuβ, W. Maier und H. Friebolin, Z. Naturforsch. 16b, 761 (1961).

⁶ Letzte Mitteilungen (mit weiterer Literatur): S. Kabuβ, A. Lüttringhaus, H. Friebolin, H. G. Schmid und R. Mecke, Tetrahedron Letters 1966, 719; Z. Naturforsch. 21b, 320 (1966).

⁷ B. Dischler, Angew. Chem. 78, 653 (1966).

Höheres Erhitzen verbot sich, da es bei Disulfiden zu chemischen Veränderungen führen kann. Deshalb war nur eine Abschätzung von ΔG^{\pm} möglich. Nimmt man + 140° C als Aufspaltungstemperatur und für die maximale Aufspaltung (chemische Verschiebung) $\Delta v \infty$ der Signale der geminalen Ringmethylen-Protonen den Wert 40 Hz an, so ergibt sich nach der Näherungsmethode von *Gutowsky* und *Holm* eine Geschwindigkeitskonstante k_a für die Ringinversion, aus der nach der *Eyring*schen Gleichung für die freie Enthalpie der Aktivierung ΔG^{\pm} ein Mindestwert von 25 kcal/Mol resultiert².

Meßtemp. T °C	$k_T \cdot 10^5$ (min ⁻¹)	$\tau_{\frac{1}{2}}$ (min)	ΔG^{\pm} (kcal/Mol)	ΔS^{\pm} (cal/Mol·grad)	ΔH^{\pm} (kcal/Mol)
100 95 90 85	576 ± 5 349 ± 5.5 207 ± 3 123 ± 3	$egin{array}{cccc} 120 \ \pm & 1 \ 199 \ \pm & 3 \ 335 \ \pm & 5 \ 564 \ \pm & 14 \end{array}$	$28,8\pm0,2$	- 6,0 ± 2,2	$26,6\pm0,6$

Tabelle 1. Racemisierung von (+)- bzw. (-)-I in 1,2,4-Trichlorbenzol bei verschiedenen Temperaturen

Nachdem uns größere Mengen der optisch aktiven Formen von I zur Verfügung standen³, haben wir deren Racemisierungsgeschwindigkeit bei verschiedenen Temperaturen gemessen und daraus die Aktivierungsparameter — zugleich als erwünschte Kontrolle des Abschätzungswertes aus der PMR-Methodik - berechnet. Als Solvens guten Lösungsvermögens und zugleich ausreichend niedrigen Dampfdrucks wurde 1,2,4-Trichlorbenzol gewählt, die Geschwindigkeit der Racemisierung bei $+85^{\circ}$, 90° , 95° und 100° C gemessen. Die aus dem Arrhenius-Diagramm (Abb. 5) graphisch ermittelte Aktivierungsenergie E_a ergab sich zu 27,3 + 0,6 kcal/Mol. Tab. 1 gibt Auskunft über die Geschwindigkeitskonstanten k_T , die Halbwertszeiten $\tau_{\frac{1}{2}}$ bei diesen Temperaturen sowie über die thermodynamischen Aktivierungsgrößen $\Delta H^{+} = \text{Aktivierungsenthalpie},$ $\Delta G^{*} =$ freie Enthalpie der Aktivierung und $\Delta S^{*} =$ Aktivierungsentropie.

Zieht man ähnliche Cyclooctadien-(1,3)-Systeme zum Vergleich heran⁸, so fällt die hohe optische Stabilität von I noch mehr in die Augen: Die sperrig substituierte Spiro-Verbindung II hat z. B. bei $+23^{\circ}$ C eine Halbwertszeit von nur 1,4 min⁹, und die *cis*-Dicarbonsäure III racemisiert sich bei $+31,5^{\circ}$ C mit der Halbwertszeit von 31,5 min und weist einen gegenüber I wesentlich niedrigeren ΔG^{\pm} -Wert von 23,3 kcal/

⁸ E. L. Eliel, Stereochemie der Kohlenstoffverbindungen, S. 193, Verlag Chemie, Weinheim 1966.

⁹ S. R. Ahmed und D. M. Hall, J. chem. Soc. [London] 1959, 3383.

A. Lüttringhaus u. a.:

 $\mathrm{Mol^{10}}$ auf. Erst die Einführung von zwei weiteren Doppelbindungen führt beim Achtring zu einer erheblichen Versteifung: die Diaza-dicarbonsäure IV racemisiert sich mit meßbarer Geschwindigkeit erst oberhalb von $+230^{\circ}$ C mit $\Delta G^{\pm} = 44 \mathrm{kcal/Mol^{11}}$. Das erste in Enantiomere gespaltene Cyclooctatetraen-Derivat, die Dicarbonsäure V, die insofern von I, II, III und IV abweicht, als sie kein Biphenylskelett enthält, racemisiert sich im Gebiet von $+120 \mathrm{bis} + 140^{\circ}\mathrm{C}$ mit der Aktivierungsenergie von $\sim 27 \mathrm{kcal/Mol^{12}}$.

Worauf beruht nun die auffallend hohe Stabilität von 1? Als wesentlichen Unterschied zu II und III erkennt man lediglich die größeren Bindungsabstände von zweimal C—S (1,8 Å) und einmal S—S (2,04 Å) gegenüber drei CH_2 — CH_2 -Abständen (1,54 Å) bei III; beim optisch besonders labilen II bedeuten zwei C—N-Abstände noch eine zusätzliche Bindungsverkürzung, ganz in die Reihe passend. Diesem Einfluß von *Bindungslängen* auf die Versteifung von Konformationen ist in der Literatur bislang wenig Beachtung geschenkt worden.

An den (für die Bindungslängen) maßstabgerechten Dreiding-Modellen läßt sich dieser, bei I eine Racemisierung erschwerende Einfluß gut erkennen. Der Versteifungseffekt ist so groß, daß darüber hinaus für jede optisch aktive Form zwei diskrete, durch eine offenbar beachtliche Energieschwelle getrennte Konformationen existenzfähig erscheinen,

¹⁰ L. V. Dvorken, R. B. Smyth und K. Mislow, J. Amer. chem. Soc. 80, 486 (1958).

¹¹ F. Bell, J. chem. Soc. [London] 1952, 1527; D. M. Hall und J. M. Insole, ebenda 1964, 2326.

¹² K. Mislow und H. D. Perlmutter, J. Amer. chem. Soc. 84, 3591 (1962).

eine Pseudosessel- (Abb. 2) und eine Pseudowannenform (Abb. 3). Anders als beim Cyclohexan erscheinen beide Formen als auffallend starr. Das PMR-Spektrum (Abb. 1), das sich zwischen + 24 und $+ 130^{\circ}$ C nicht wesentlich ändert, läßt vorerst nicht entscheiden, ob eine von diesen Konformationen bei Normaltemperatur bevorzugt ist oder ob beide in einem sich rasch einstellenden Gleichgewicht koexistieren. Wir hoffen, dies durch Tieftemperatur-PMR-Spektren noch entscheiden zu können.

Am Modell zeigt der Pseudosessel Interplanarwinkel für die Benzolebenen von $\sim 75^{\circ}$, um die S—S-Gruppe von $\sim 60^{\circ}$, die Pseudowanne für die Benzolebenen $\sim 90^{\circ}$, um die S—S-Gruppe $\sim 100^{\circ}$. Da dieser letztere

Abb. 3. I in "Pseudowannen"-Konformation

Wert der des Energieminimums für Disulfide ist und zwischen einer Verdrillung der Phenylebenen um 75° und 90° energetisch kaum mehr ein Unterschied ist, sollte man der Pseudowannen-Konformation den Vorzug geben. Ein weiteres Argument hierfür ist das Fehlen jeglicher merklicher UV-Absorptionsbanden im Gebiet um 250-290 nm. Das spricht einerseits für das Fehlen jeglicher Konjugation zwischen den Phenylkernen, also für einen Interplanarwinkel $> 60^{\circ}$ zwischen diesen: bei kleinerem Winkel kommt nämlich die Konjugation der Benzolkerne in einem sehr hohen Maximum um 250 nm mit $\varepsilon \sim 15\,000$ zu Tage¹³. Für den Interplanarwinkel um die C-S-S-C-Gruppierung (in der Literatur oft unkorrekt als "Diederwinkel" bezeichnet) gilt das Umgekehrte: Liegt er um 90 bis 100°, also im energetischen Minimum, so hat das kurzwellige UV-Absorption mit niedrigem z zur Folge; Verkleinerung des Interplanarwinkels bewirkt längerwellige Absorption und höhere Extinktion¹⁴. Ihr Fehlen spricht also für nahezu optimale Interplanarwinkel um 100° in I, d. h. ebenfalls zugunsten der Pseudowannen-Konformation für Racem- wie aktive Formen von I.

¹³ E. A. Braude und W. B. Forbes, J. chem. Soc. [London] 1955, 3776.

¹⁴ J. S. Barltrop, P. M. Hayes und M. Calvin, J. Amer. chem. Soc. 76, 4348 (1954).

Bemerkenswert ist noch, daß nur von der Pseudowanne aus der Übergangszustand für die Racemisierung (Abb. 4) direkt zu erreichen ist; der Weg von der Pseudosessel-Konformation zur Racemisierungs-Konformation führt, wie das Modell eindeutig ausweist, zwangsläufig über die Pseudowanne; dieses erste Umklappen (einer CH₂—S—S-Gruppe) Pseudosessel \rightarrow Pseudowanne ist, das sei betont, nicht mit dem Verlust der Chiralität verbunden. Dieser erfolgt erst im Racemisierungs-Übergangszustand. Dessen hohe Spannung — mit $\Delta G^{\pm} = 28.8 \pm 0.2$ kcal/ Mol charakterisiert — kommt in Abb. 4 gut zum Ausdruck. Sie setzt sich hauptsächlich folgendermaßen zusammen: 1. Der Interplanarwinkel um die Disulfidgruppe ist von ~ 90 —100° auf $\sim 0^{\circ}$ verkleinert, was, für sich

Abb. 4. I im Übergangszustand der Racemisierung

genommen, eines Energieaufwandes von $\sim 7 \text{ kcal/Mol}$ (im Dimethyldisulfid¹⁵) bedarf; 2. die beiden CH₂—S-Bindungswinkel sind auf $\sim 90^{\circ}$ verkleinert; 3. zwei Wasserstoffatome der beiden CH₂-Gruppen nähern sich derart, daß eine starke Transanularspannung¹⁶ auftritt; 4. die Biphenvlachse ist von 180° auf ~ 165 —170° geknickt.

Dem steht insofern ein kleiner Energiegewinn gegenüber, als die Phenylkerne aus der Konformation mit nahezu gekreuzten Ebenen komplanare Anordnung annehmen können, wenn auch mit "verbogener Achse". Die Stabilisierungsenergie für ein normales, komplanares Biphenyl wurde zu 6,96¹⁷, die Torsionsbarriere des Biphenyls zu 3,9 kcal/Mol¹⁸ errechnet

Herrn Dr. H. Friebolin, Institut für Elektrowerkstoffe, Freiburg/Brsg., verdanken wir die Aufnahmen der PMR-Spektren im Varian DP 60. Den Farbenfabriken Bayer AG, Leverkusen, und dem Fonds der Chemischen Industrie danken wir verbindlich für die Förderung unserer Arbeiten.

¹⁵ W. N. Hubbard, D. R. Douslin, J. P. McCullough, D. W. Scott, S. S. Todd, J. F. Messerly, I. A. Hossenloppe, Ann George und Guy Waddington, J. Amer. chem. Soc. **80**, 3547 (1958).

¹⁶ Siehe⁸, und zwar S. 313.

¹⁷ J. Guy, J. Chim. Physics 46, 469 (1949).

¹⁸ K. E. Howlett, J. chem. Soc. [London] 1960, 1055.

Experimenteller Teil, Messungen und Rechnungen

Das 1,2,4-Trichlorbenzol wurde nach mehrfachem Ausschütteln mit verd. NaOH, verd. H_2SO_4 und Wasser an einer Kolonne rektifiziert, das optisch aktive 4,5-6,7-Dibenzo-1,2-dithia-cyclooctadien (I) nach ³ dargestellt. Jeweils 50 bis 80 mg von hochaktiviertem (+)- oder (--)-I, gelöst in etwa 20 ml 1,2,4-Trichlorbenzol, wurden in einem dünnwandigen Kölbchen (25 ml) mit dicht sitzendem Schliffstopfen im stets gleichen Ultra-Thermostaten erhitzt. Nach Einstellen des Temperaturgleichgewichts (30 min) wurden zu den angegebenen Zeiten Proben von je 3 ml entnommen und deren Drehwerte bei 20° C und den beiden Wellenlängen 436 und 405 nm gemessen. Um den Ein-

Abb. 5. Arrhenius-Diagramm, basierend auf den kinetischen Messungen der Racemisierung von (+)- oder (--)-I in 1,2,4-Trichlorbenzol

fluß des Meßfehlers der ersten Messung (α_0) klein zu halten, wurden jeweils die zweite und dritte Messung ebenfalls als Nullwerte zur Berechnung der Geschwindigkeitskonstanten k_T nach

$$k_T = \frac{1}{t} \ln \alpha_0 / \alpha_t$$

eingesetzt (α_0 = Drehwert zur Zeit 0; α_t = Drehwert zur Zeit t). Nach der Arrhenius-Gleichung

$$\log k_T = \frac{E_a \cdot \mathbf{0.4343}}{RT} + \log k_\mathbf{0}$$

ließ sich die Aktivierungsenergie E_a in üblicher Weise graphisch ermitteln aus der Steigung der Geraden, die sich durch Auftragen von log k_T gegen 1/T (Abb. 5) ergab:

$$E_{a} = \frac{\log k_{T_{2}} - \log k_{T_{1}}}{0,4343} \cdot \frac{R \cdot T_{1} \cdot T_{2}}{T_{2} - T_{1}}$$

Die freie Aktivierungsenthalpie wurde nach der Gleichung von Eyring

$$\Delta G = -4,573 T \log \frac{k_T \cdot h}{T \cdot k_B}$$

mit h = Planckschem Wirkungsquantum und $k_B = Boltzmann$ -Konstante, Aktivierungsentropie und -enthalpie nach

$$\Delta S = \frac{E_a - \Delta G}{T} - R$$

bzw.

 $\Delta H^{\pm} = E_a - RT$

berechnet.

Zu den Fehlergrenzen: Die k_T -Werte wurden gemittelt und ihr Fehler nach der $Gau\beta$ schen Fehlerrechnung bestimmt. Den Fehler von E_a ermittelten wir, indem wir durch die im Arrhenius-Diagramm eingetragenen Fehlergrenzen der log k_T -Werte zwei weitere Geraden legten mit der größt- bzw. kleinstmöglichen Steigung. Dieser Fehler ließe sich durch weitere k_T -Messungen bei höheren oder tieferen Temperaturen noch wesentlich verringern.

Der relative Fehler der Temperaturmessung $(\pm 0,2^{\circ} C)$ ist vernachlässigbar. Der Fehler von ΔG^{\pm} wird lediglich durch die Unsicherheit im Absolutwert der Temperaturbestimmungen $(\pm 3^{\circ} C)$ hervorgerufen, da der Fehler der k_T -Werte erst in die 4. Dezimale einginge. Die Aktivierungsentropie ΔS^{\pm} , aus der Differenz zweier großer, mit Fehlern behafteter Zahlen resultierend, ist, wie stets, mit der größten Fehlerbreite behaftet.

Die numerischen Werte der kinetischen Messungen sind nachstehend verzeichnet (Tab. 2 bis 5).

(min.)	X ₄₃₆	X 405	$k_{436} \cdot 10^{5}$ (min ⁻¹)	k405 · 10 ⁵ (min ⁻¹)	t (min)	$k_{436} \cdot 10^{5}$ (min ⁻¹)	$k_{405} \cdot 10^5$ (min ⁻¹)	t (min)	$k_{436} \cdot 10^{5}$ (min ⁻¹)	$k_{405} \cdot 10^{5}$ (min ⁻¹)
0	+ 1.915	+2,485								
74	1,245	1,615	583	582	0					
179	0,680	0,880	579	580	105	577	578	0		
224	0.525	0,685	578	576	150	576	573	45	578	558
269	0.405	0.525	578	578	195	576	577	90	578	576
314	0.315	0.410	575	574	240	574	572	135	571	566
364	0,235	0,300	577	581	290	575	581	185	575	583

Tabelle 2. Racemisierung von (+)-I bei $T = 373^{\circ}$ K

Tabelle 3. Racemisierung von (+)-I bei $T = 368^{\circ}$ K

(min.)	X436	X ₄₀₅	k₄36 · 10⁵ (min ^{~1})	k ₄₀₅ · 10 ⁵ (min ^{~1})	t (min)	$k_{436} \cdot 10^5$ (min ⁻¹)	$k_{405} \cdot 10^{5}$ (min ⁻¹)	(min)	$k_{436} \cdot 10^{5}$ (min ⁻¹)	k ₄₀₅ · 10 ⁵ (min ¹)
0	+ 2,255	+ 2,925	_							
65	1,790	2,320	358	358	0					
150	1,340	1,735	348	349	85	342	343	0		
210	1.080	1.405	351	349	145	349	346	60	361	353
245	0.955	1.250	351	347	180	349	344	95	358	347
300	0,800	1,040	346	345	235	343	342	150	344	343

1330

t (min.)	X ₄₈₆	04 ₄₀₅	$k_{436} \cdot 10^5$ (min ⁻¹)	$k_{405} \cdot 10^5$ (min ⁻¹)	t (min)	$k_{436} \cdot 10^5$ (min ⁻¹)	$k_{405} \cdot 10^5$ (min ⁻¹)	t (min)	$k_{436} \cdot 10^5$ (min ⁻¹)	$k_{405} \cdot 10^{6}$ (min ⁻¹)
0	-2,865	-3,700		1						
90	2,370	3,050	211	215	0					
180	1,965	2,535	210	210	90	209	207	0		
270	1,640	2,110	207	208	180	205	205	90	202	205
335	1,435	1,850	207	207	245	205	205	155	204	204

Tabelle 4. Racemisierung von (--)-I bei $T=363^{\circ}\,{
m K}$

Tabelle 5. Racemisierung von (+)-I bei $T = 358^{\circ}$ K

<i>t</i> (min.)	X436	a405	$k_{435} \cdot 10^{5}$ (min ⁻¹)	$k_{405} \cdot 10^{5}$ (min ⁻¹)	t (min)	$k_{426} \cdot 10^{5} \ (\min^{-1})$	k ₄₀₅ · 10 ⁵ (min ⁻¹)
0	+ 2,245	+ 2,905					
86	2,005	2,605	132	127	0		
216	1,725	2,240	122	121	130	116	117
276	1,595	2,065	124	124	190	121	123
321	1,505	1,950	125	124	235	122	123
376	1,405	1,825	125	124	290	122	123
426	1,325	1,720	124	123	340	122	122